If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2-153=0
a = 8; b = 0; c = -153;
Δ = b2-4ac
Δ = 02-4·8·(-153)
Δ = 4896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4896}=\sqrt{144*34}=\sqrt{144}*\sqrt{34}=12\sqrt{34}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{34}}{2*8}=\frac{0-12\sqrt{34}}{16} =-\frac{12\sqrt{34}}{16} =-\frac{3\sqrt{34}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{34}}{2*8}=\frac{0+12\sqrt{34}}{16} =\frac{12\sqrt{34}}{16} =\frac{3\sqrt{34}}{4} $
| 5w+–7w=–14 | | 28=k+7(k-4) | | 5x+9+4x-2=25 | | 10.x/22-5=3 | | 8x-4+3x+9=82 | | 6x-8x+3=31 | | 8p-3=33 | | -10.6=(2*m)+11.7 | | 6(7-6a)=222 | | -6+y/4=20 | | 125m-100m+43,200=45,225-200m | | 14.2=(-11.6+2)x | | 12x+-13x=3 | | 12x/5=60/7 | | 2+n/7=8 | | 3(1-5n)=93 | | 5-(3y-6)=2y+12 | | 6x−8x+3=31 | | 3/4x=2.4 | | 22=3(a+2)+a | | 7x-9=3x-16/3 | | -3(6+5x)=-108 | | -14.3=(-1.4-3)d | | 8x+6=17x+28 | | 5v^2-15v+12=3v | | 60=m-16 | | 8³x=128 | | 4n+2(n-8)=-(-3n+1)+6 | | (7y+6)=4y | | 24+4x=10 | | 3(6+5x)=-108 | | 0.0007=10x |